Nonlinear shifts of q-Bose operators and q-coherent states

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 24 L1129
(http://iopscience.iop.org/0305-4470/24/19/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 11:25

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Nonlinear shift of \boldsymbol{q}-Bose operators and \boldsymbol{q}-coherent states

A S Zhedanov
Physics Department, Donetsk University, Donetsk 340055, USSR

Received 26 June 1991

Abstract

The analogue of shift for q-Bose operators is found. In contrast with the case of ordinary Bose operators this shift is a nonlinear transformation: unitary operators of shift do not form a group. Two dual systems of a-coherent states associated with these shift operators are obtained. The matrix elements of the shift operator in canonical basis are expressed via the Charlier q-polynomials.

The so-called q-oscillator probably plays the role of an ordinary oscillator at very small distances of the order of Planck length (Biedenharn 1989).

To construct the q-oscillator one needs to define the q-Bose creation \boldsymbol{A}_{+}and annihilation A_{-}operators by the following relation (Biedenharn 1989, Kulish and Damaskinsky 1990)

$$
\begin{equation*}
A_{-} A_{+}-q A_{+} A_{-}=1 \tag{1}
\end{equation*}
$$

where $q=\exp (-\omega), \omega \geqslant 0$.
The relation (1) is the q-analogue of the usual commutation rule defining the Heisenberg algebra of the ordinary boson creation a^{+}and annihilation a operators. If $\omega \rightarrow 0$ then $A_{+} \rightarrow a^{+}, A_{-} \rightarrow a$. Sometimes the algebra of operators A_{+}, A_{-}is called the q-Heisenberg algebra.

One can also introduce the number operator A_{0} by the relation

$$
\begin{equation*}
\exp \left(-\omega \boldsymbol{A}_{0}\right)=\left[\boldsymbol{A}_{-}, \boldsymbol{A}_{+}\right] \tag{2}
\end{equation*}
$$

Then three operators A_{+}, A_{-}, A_{0} form the so-called q-oscillator algebra. There exists the canonical basis $|\boldsymbol{n}\rangle$ for this algebra:

$$
\begin{align*}
& A_{0}|n\rangle=n|n\rangle \\
& A_{-}|n\rangle=\mu_{n}|n-1\rangle \quad n=0,1, \ldots \tag{3}\\
& A_{+}|n\rangle=\mu_{n+1}|n+1\rangle
\end{align*}
$$

where $\mu_{n}=\left(1-q^{n}\right) /(1-q)$.
The q-coherent states (q-cs) $|z\rangle_{q}$ are defined to be eigenstates for the annihilation operator A_{-}(Biedenharn 1989, Kulish and Damaskinsky 1990, Quesne 1991)

$$
\begin{equation*}
A_{-}|z\rangle_{q}=z|z\rangle_{q} . \tag{4}
\end{equation*}
$$

If $q \rightarrow 1$ then the $q-\mathrm{cs}|z\rangle_{q}$ turn into the ordinary (Glauber) cs $|z\rangle$.
The q-cs possess some remarkable properties analogous to those of the ordinary cs. For example, there is the following relation

$$
\begin{equation*}
|z\rangle_{q}=e_{q}\left(z A_{+}\right)|0\rangle / \sqrt{e_{q}\left(|z|^{2}\right)} \tag{5}
\end{equation*}
$$

where

$$
e_{q}(z)=\sum_{n=0}^{\infty} z^{n} /[n!]_{q}
$$

is the q-exponent and

$$
[n!]_{q}=(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{n}\right) /(1-q)^{n} .
$$

However for the ordinary cs there is another (but equivalent) method of definition. This is based on the existence of a shift automorphism for the Heisenberg algebra:

$$
\begin{equation*}
b(z)=D(z) a D^{+}(z)=a-z \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
D(z)=\exp \left(z a^{+}-\bar{z} a\right) \tag{7}
\end{equation*}
$$

is a unitary operator shifting the Bose operators by the parameter z (Perelomov 1986).
For the real values of z the operators $D(z)$ form a one-parameter subgroup and z is an additive parameter:

$$
\begin{align*}
& D(x) D(y)=D(x+y) \\
& D^{+}(z)=D(-z) \tag{8}
\end{align*}
$$

The ordinary cs can be defined as a vacuum for the shifted annihilation operator b :

$$
\begin{equation*}
|z\rangle=D(z)|0\rangle \quad b(z)|z\rangle=0 . \tag{9}
\end{equation*}
$$

One can ask about the existence of a shift transformation for the q-Bose operators. It is clear that a simple shift like (6) is not an antomorphism, i.e. it does not conserve the relation (1). So such a transformation, if it exists, should be nonlinear.

One can easily verify that this nonlinear shift really exists and has the form

$$
\begin{align*}
& B_{-}(z)=A_{-} \sqrt{1-v \exp \left(-\omega A_{0}\right)}-z \exp \left(-\omega A_{0}\right) \tag{10}\\
& B_{+}(z)=\sqrt{1-v \exp \left(-\omega A_{0}\right)} A_{+}-z \exp \left(-\omega A_{0}\right)
\end{align*}
$$

where $v=z^{2}\left(q^{-1}-1\right)$, the parameter z is taken to be real and

$$
z^{2}<1 /\left(q^{-1}-1\right)
$$

The transformation (10) is an automorphism of the algebra (1), i.e.

$$
\begin{equation*}
B_{-}(z) B_{+}(z)-q B_{+}(z) B_{-}(z)=1 \tag{11}
\end{equation*}
$$

Therefore there should exist a unitary operator $U(z)$ being the q-analogue of $D(z)$:

$$
\begin{equation*}
U(z) A_{ \pm} U^{+}(z)=B_{ \pm}(z) \tag{12}
\end{equation*}
$$

One can define the new system of q-coherent states ${\widetilde{z}\rangle_{4}}^{\text {coinciding }}$ with the vacuum of the $B_{0}(z)$:

$$
\begin{equation*}
\widetilde{\mid z}_{\varphi}=U(z)|0\rangle \quad B_{-} \mid \widetilde{z\rangle_{q}}=0 \tag{13}
\end{equation*}
$$

In contrast with the case of ordinary cs the systems $|z\rangle_{4}$ and $\overrightarrow{|z\rangle_{q}}$ do not coincide:

$$
\begin{equation*}
\widetilde{|z\rangle_{9}} \neq \overline{z\rangle_{q}} \quad \text { for } z \neq 0 \tag{14}
\end{equation*}
$$

The reason for this is that the operators $U(z)$ do not form a group, i.e.

$$
\begin{equation*}
U(x) U(y) \neq U(z) \quad U^{+}(z) \neq U(-z) \tag{15}
\end{equation*}
$$

(relation (15) follows from the fact that two consequent nonlinear shifts (10) are not the third shift).

Nevertheless, there exists a simple relation between $|z\rangle_{q}$ and $\widetilde{\bar{z}\rangle_{q}}$. To see this relation let us operate by the $B_{-}(-z)$ to the vacuum $|0\rangle$:

$$
\begin{equation*}
B_{-}(-z)|0\rangle=z|0\rangle . \tag{16}
\end{equation*}
$$

So the vacuum $|0\rangle$ is a q-coherent state (in the sense of (4)) for the operator $B_{-}(-z)$. Therefore

$$
\begin{equation*}
|z\rangle_{\varphi}=U^{+}(-z)|0\rangle \tag{17}
\end{equation*}
$$

The relations (13) and (17) define two different systems of q-coherent states. One can say that the system $|z\rangle_{q}$ is dual with regard to $\tilde{z\rangle_{q}}$. There is the following relation between these systems:

$$
\begin{equation*}
\widetilde{|z\rangle_{q}}=U(z) U(-z)|z\rangle_{q} . \tag{18}
\end{equation*}
$$

Let us examine the structure of matrix coefficients $M_{m n}=\langle m| U^{+}(z)|n\rangle$ for the operator $U^{+}(z)$.

On the one hand

$$
\begin{equation*}
\langle m| \exp \left(-\omega A_{0}\right) U^{+}(z)|n\rangle=\exp (-\omega m) M_{m n} . \tag{19}
\end{equation*}
$$

On the other hand

$$
\begin{align*}
\langle m| \exp (-\omega & \left.A_{0}\right) U^{+}(z)|n\rangle \\
& =\langle m| U^{+}(z) U(z) \exp \left(-\omega A_{0}\right) U^{+}(z)|n\rangle \\
& =\langle m| U^{+}(z)\left[B_{-}(z), B_{+}(z)\right]|n\rangle \\
& =d_{n+1} M_{m n+1}+d_{n} M_{m n-1}+g_{n} M_{m n} \tag{20}
\end{align*}
$$

where

$$
\begin{align*}
& g_{n}=(1+v) q^{n}-(1+q) v q^{2 n} \\
& d_{n}=z q^{n-1}\left[(1-q)\left(1-q^{n}\right)\left(1-v q^{n}\right)\right]^{1 / 2} . \tag{21}
\end{align*}
$$

It is seen from (20) and (19) that one can represent the matrix elements $M_{m n}(z)$ in the form:

$$
\begin{equation*}
M_{m n}(z)=\langle m| U^{+}(z)|0\rangle C_{n}(x(m)) \tag{22}
\end{equation*}
$$

where $C_{n}(x(m))$ is the system of orthogonal polynomials of the discrete argument $x(m)=\exp (-\omega m)$:

$$
\begin{equation*}
\sum_{m=0}^{\infty} W_{m} C_{n}(x(m)) C_{n} \cdot(x(m))=\delta_{m n^{\prime}} . \tag{23}
\end{equation*}
$$

The weight function W_{m} for these polynomials has the form

$$
\begin{equation*}
W_{m}=\left(\left(m\left|U^{+}(z)\right| 0\right\rangle\right)^{2}=\left(\langle m \mid-z\rangle_{q}\right)^{2}=z^{2 m} /\left(e_{q}\left(z^{2}\right)[m!]_{4}\right) . \tag{24}
\end{equation*}
$$

One can conclude that the weight function (24) coincides with that for the so-called Charlier q-polynomials (we define them as in Nikiforov et al (1985)), which are the special case of the Askey-Wilson q-polynomials (Askey and Wilson 1985).

If $\omega \rightarrow 0$ the matrix element $M_{m n}(z)$ can be expressed in terms of ordinary Charlier polynomials (Perelomov 1986, Feinsilver 1988). So the formula (22) is the q-generalization of the 'classical' result.

The remaining problems are:
(i) to obtain the explicit form of the 'shift' operator $U(z)$ in terms of q-exponents;
(ii) to find the nonlinear automorphisms for other q-algebras. For example it would be interesting to find the nonlinear 'rotation' in $\mathrm{SU}_{q}(2)$.

References

Askey R and Wilson J 1985 Mem. Am. Math. Soc. 54 1-55
Biedenharn L C 1989 J. Phys. A: Math. Gen. 22 L873-8
Feinsilver P 1988 Acta Appl. Math. 13 291-333
Kulish P P and Damaskinsky E V 1990 J. Phys. A: Math. Gen. 23 L415-9
Nikiforov A F, Suslov S K and Uvarov V B 1985 Classical Orthogonal Polynomials of Discrete Variables (Moscow: Nauka) (in Russian)
Perelomov A M 1986 Generalized Coherent States and their Applications (Berlin: Springer)
Quesne C 1991 Phys. Lett. 153A 303-7

