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LElTER TO THE EDITOR 

Nonlinear shift of q-Bose operators and q-coherent states 

A S Zhedanov 
Physic: Department, Dnnetsk University, Dnnctsk 340055, IJSSR 

Received 26 June 1991 

Abstract. The analogue of shift for q-Bose operators is found. In contrast with the case 
of ordinary Bose operators this shift is a nonlinear transformation: unitary operators of 
shift do not form a group. Two dual systems o f  q-coherent states associated with there 
shift operaton are obtained. The matrix elements o f t h e  shift operator in canonical basis 
are expressed via the Charlier q-polynomials. 

The so-called q-oscillator probably plays the role of an ordinary oscillator at very 
small distances of the order of Planck length (Biedenharn 1989). 

10 GOII>LIULL LLK y-us~riarui vzic IICCUS LO uciiric ihr y-Bose i-ieaiion A, and 
annihilation A- operators by the following relation (Biedenharn 1989, Kulish and 
Damaskinsky 1990) 

-. _ . ~ ~  --. 111 -... .-. -..>. .~ > ~ , ~ ~  

A-A+ - qA+A_= 1 (1) 

The :e!a!inn (!) is. :he g=zna!ngne nf !he usua! commLl!a!inn T"!P defining !he 
where q = exp(-w), o 2 0. 

Heisenberg algebra of the ordinary boson creation at and annihilation a operators. 
I f  w + 0 then A+ -f a+,  A _  + a. Sometimes the algebra of operators A+,  A- is called 
the ¶-Heisenberg algebra. 

One can also introduce the number operator A. by the relation 

exp(-wA,) = [A- ,  A+]. (2) 

Then three operators A + ,  A-,  A, form the so-called q-oscillator algebra. There exists 
the canonical basis In) for this algebra: 

Adn)= n l n )  

A-ln) = p J n  - 1) n=O,1, . . .  (3) 
A l . . \ - ~ ~  I.. I * \  

n + l " / - P n + , l "  7 1 /  

where p L . = ( l - q n ) / ( l - q ) .  

operator A _  (Biedenharn 1989, Kulish and Damaskinsky 1990, Quesne 1991) 
The q-coherent states (q-cs) lz), are defined to be eigenstates for the annihilation 

I f  q + 1 then the q-cs lz), turn into the ordinary (Glauber) cs 12). 

cs. For example, there is the following relation 
The q-cs possess some remarkable properties analogous to those of the ordinary 

Iz) ,  = e , ( z A + ) l o ) / m  ( 5 )  
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where 
m 

e&)= Z z"/[n!I, 

[ n ! I y =  ( 1  - q ) ( l - q 2 ) .  . . ( 1  -q")/( l  -q)".  

"=U 

is the q-exponent and 

However for the ordinary cs there is another (but equivalent) method of definition. 

( 6 )  

This is based on the existence of a shift automorphism for the Heisenberg algebra: 

b ( z )  = D(z)aD'(z) = a - 2  

where 

D ( z ) = e x p ( z a + - I a )  (7) 
is a unitary operator shifting the Bose operators by the parameter z (Perelomov 1986). 

For the real values of z the operators D(z)  form a one-parameter subgroup and z 
is an additive parameter: 

The ordinary cs can he defined as a vacuum for the shifted annihilation 
operator b: 

b)= D(z)lO) b(z ) l z )  =O. (9) 

One can ask about the existence of a shift transformation for the q-Bose operators. 
i! doer no! CongCIve !! is c!ear that 2 simp!c shift (6 )  is no! zn an!omorphismj 

the relation ( 1 ) .  So such a transformation, if it exists, should he nonlinear. 
One can easily verify that this nonlinear shift really exists and has the form 

B _ ( z ) = A _ d l - u e x p ( - w A , ) - z e x p ( - w A , )  

B + ( z . ) = J l - u e x p ( - w A , ) A + - z  exp(-wA,) 
(10) 

- I  

where U = z<(q - ' -  1 ) .  the parameter z is taken to  be reai and 

2 < 1 / ( q - ' - l )  

B_(  z)B+( Z) - qB+( z )  B_( z )  = 1 .  ( 1 1 )  

U ( z ) A , U + ( z ) =  B+(z ) .  (12) 

The transformation (10) is an  automorphism of the algebra ( l ) ,  i.e. 

Therefore there should exist a unitary operator U ( z )  being the q-analogue of D(z):  

I 

One can define the new system of q-coherent states I Z ) ~  coinciding with the vacuum 

B-lz), = O .  (13) 

In contrast with the case of ordinary cs the systems I Z ) ~  and Iz), do not coincide: 

IZ), # 14, for z # 0. (14) 

of the Bu(z): - - 
- 14, = U(Z) lO)  

- -  
The reason for this is that the operators U ( z )  do not form a group, i.e. 
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w x ) U ( Y ) f  U ( Z )  U+(Z) # U(-z) (15) 

(relation (15) follows from the fact that two consequent nonlinear shifts ( I O )  are not 

Nevertheless, there exists a simple relation between Iz), and lz),. To see this relation 

B-(-z)lO)= z/O). (16) 

So the vacuum 10) is a q-coherent state (in the sense of (4)) forthe operator B _ ( - z ) .  

lz), = U+(-z)Io). (17) 

The relations (13) a n d ( l 7 )  define two differentsystems of q-coherent states. One 
can say that the system I Z ) ~  is dual with regard to 1 ~ ) ~ .  There is the following relation 
between these systems: 

the third shift). - 

let us operate by the B _ ( - z )  to the vacuum IO): 

Therefore 

I 

I&= u ( z ) u ( - z ) l z ) q .  (18) 

Let us examine the structure of matrix coefficients Mm,=(mlUf(r) /n)  for the 

On the one hand 
operator U+(Z) .  

(mi exp(-wA,) U'(z ) (n)  = exp(-wm)Mm.. (19) 

On the other hand 

(mi exp(-oAo) U'(z)b) 

=(mi U'(r) U ( z )  exp(-wA,) U+(z) ln)  

= ( m / U + ( z ) [ B - ( z ) ,  B+(r)lln) 

= d , + , M m n + ,  + d J f m n - i  + g M m n  (20) 

where 

g. = (1  + 0)q" -(1 +q)Uq2" 

d, =Zq"-'[(l-q)(1-q")(1 - I J ~ " ) ] " * .  
(21) 

It is seen from (20) and (19) that one can represent the matrix elements M,.(z)  
in the form: 

~ , . ( z )  = (mi u + ( z ) l o ) c h ( m ) )  (22) 

where C . ( x ( m ) )  is the system of orthogonal polynomials of the discrete argument 
x ( m )  =exp(-wm): 

m 

E w , c d x ( m ) ) c , M m ) )  = b. (23) 
,=0 

The weight function W, for these polynomials has the form 

~ , = ( ( m ~ ~ + ( z ) ~ ~ ) ) * = ( ( m ~ - z ) , ) ' = z ~ " / ( e , ( z * ) [ m ! ] , ) .  (24) 

One can conclude that the weight function (24) coincides with that for the so-called 
Charlier q-polynomials (we define them as in Nikiforov el al (1985)), which are the 
special case of the Askey-Wilson q-polynomials (Askey and Wilson 1985). 
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If w + O  the matrix element M,,,.(z) can be expressed in terms of ordinary Charlier 
polynomials (Perelomov 1986, Feinsilver 1988). So the formula (22) is the q-generaliz- 
ation of the ‘classical’ result. 

The remaining problems are: 
( i )  to obtain the explicit form of the ‘shift’ operator U ( z )  in terms of q-exponents; 
(ii) to find the nonlinear automorphisms for other q-algebras. For example it would 

be interesting to find the nonlinear ‘rotation’ in SU,(2). 
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